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In this paper we present a theoretical study of the extraordinarily slow electron-exchange reaction C O ~ + ( N H ~ ) ~  + C O ~ + ( N H ~ ) ~  
4 C O ~ + ( N H ~ ) ~  + C O ~ + ( N H ~ ) ~ .  With the utilization of multiphonon theory for nonadiabatic electron-transfer reactions, 
k l  was expressed as a product of a two-center electron-exchange term, IV#, and a nuclear Franck-Condon factor, G. IVld2 
was evaluated by invoking the effects of spin-orbit coupling, while G was calculated by incorporating the effects of 
configurational changes and of frequency changes in the first coordination layer, as well as the Marcus-Levich solvent 
reorganization energy. We demonstrate that both electronic spin multiplicity restrictions and the nuclear reorganization 
energy contribute significantly to the retardation of the rate of this reaction. The mechanism considered herein is more 
efficient than the alternative reaction paths which involve thermally excited electronic states. 

I. Introduction 
There have been extensive e~perimental l -~ and t h e ~ r e t i c a l ~ , ~  

studies of electron-transfer reactions between coordination 
complexes in solution. An unsolved problem in this area 
pertains to the enormous difference between the rates of the 
symmetric electron-exchange r e a c t i o n P  (1) and (2), where 

a t  room temperature (25 "C) k l / k 2  N 10-'3-10-'5. The 
extraordinarily slow rate of some electron-exchange reactions 
has been attributed by Libbyg about 25 years ago to small 
Franck-Condon vibrational overlap, originating from large 
configurational changes in the first coordination layer.6 
However, recent classical calculations of this activation 
barrierlo result in a contribution of 6.8 kcal mol-' to the 
activation energy, which is too low to account for the small 
value of k l .  Alternatively, spin multiplicity restrictions have 
been introduced to account for the slow exchange rate kl.'O 
These two effects are  interrelated. As was pointed out by 
Orgel," high spin-low spin exchange results in large con- 
figurational changes in the first coordination layer. 

In this paper we report a quantum mechanical calculation 
of the relative exchange rate k l / k 2 .  W e  show that both the 
electronic spin multiplicity restriction and the Franck-Condon 
reorganization energy contribute significantly to the retar- 
dation of the electron exchange reaction (eq 1). Both effects 
should be incorporated in a quantitative theory of electron 
transfer in this system. We shall utilize a quantum mechanical 
rate equation developed for nonadiabatic outer-sphere elec- 

0020-1669179113 18-2014$01 .OO/O 

tron-exchange reaction. I t  incorporates the following con- 
tributions: (1) the electronic-exchange matrix element, ( 2 )  
the Marcus-Levich reorganization energy of the classical polar 
solvent outside the first coordination layer, (3) the Franck- 
Condon overlap factors originating from configurational 
changes in the first coordination layer. 

The transition probability, W, for the reaction 

(3) A' + BY -+ AZ+l + BY-1 

can be expressed in the form58l2 

The factor Vlf is the two-center electron-exchange term be- 
tween the two ions 

VI, = (*flu*,) ( 5 )  

with *, and qf corresponding to the electronic wave functions 
of the initial state (Az + BY) and in the final state (A"' + 
BY-'), respectively. The  interaction V may be approximated 
as a sum of one-electron Coulomb interactions between the 
two ions. The function G(AE,E,,(Ad,j,(o,'),(w,")) appearing 
in eq 4 is the equilibrium-averaged Franck-Condon factor, 
which takes into account the solvent and the vibrations of the 
first coordination layer. It is characterized by the set of its 
arguments: aE is the energy gap between the initial and final 
electronic states, E ,  is the Marcus-Levich solvent reorgani- 
zation energy, (Ad,) is the set of reduced displacements in the 
first coordination layer, (ai) and (a/} are the sets of vibrational 
frequencies in the initial and final states. All the electronic 
and nuclear terms appearing in eq 4 are  evaluated a t  a fixed 
interionic separation. 

In the next section we discuss and evaluate the electron- 
ic-exchange matrix element. Section I11 is devoted to the 
evaluation of the factor G and the overall rate constant. The 
results are  presented in section IV, and alternative schemes 
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Table I. Structural and Spectroscopic Input Data 
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states and the three final states. As we discussed above, considerations 
of spin multiplicity show that there is a restricted set of pure spin states 
that gives nonvanishing contributions. The contributing components 
in the wave functions of Co"' and Co" in \k, and \Ef are either 'Aig 
and 2Eg or 3TIg and one of the three components of 4T1g. In the 
combination IAl, and 2Eg the electronic configurations in the 
strong-field approximation are (tz )6 and (t2$eg, while in the 
combination 3Tlg and 4TIg they are [t2,$eg and (t2g)4(eg)2. In each 
pair the configurations differ only by one electron in the eg orbital. 
Therefore, all the interaction matrix elements are proportional to the 
same one-electron matrix element (eg(a)luleg(b)). The nine matrix 
elements may be expressed as eq 9, where k and 1 are the indices of 

Vk/ = ak/(eg(a)luleg(b)) (9) 

the Co" wave function (eq 8) in the initial and final states, respectively. 
The coefficients (Yk/ (eq 10) are evaluated by using the explicit form 

a11 = c12 

a12 = a21 = Ci(C1 + c2) 

a22 = (c1 + C 2 l Z  

a33 = (c1 + C J 2  

a i 3  = a31 = ci(cI + c3) 

a23 = a32 = (cl + c2)(c1 + c3) 

(10) 
of the wave functions (eq 7 and 8). The numerical values of the 
coefficients c, are evaluated in Appendix A. 

Using the general expression for the individual rate constants (eq 
4), we can write the overall rate constant as the thermal average over 
the nine processes (eq 11). On the other hand, in the ruthenium case 

co- co- RU- RU- 
(NH,)," (NH3),3+ (NH,)6" (NH3)63+ 

M-L, Aa 2.114 1.936 2.144 2.104 
~ , ( A , ~ ) , c m ~ - ' ~  357 494 35OC 500 

w3(F1,), cm-' 325 474.7 463 
u4(Fl4),  cm-' 192 331 273 
w,(F,~),  cm-' 187d 322 248 
W,(F,~), cm-' 143d 246e 

w2(Eg), cm- 255 442 475 

Reference 10. Skeletal vibrational frequencies were taken 
from ref 15. Estimated according to the relation w1 (11) = 
0 . 7 ~ '  (111). 
ws(II)/w5~(III) = w6(II)/w6(III). e Evaluated from the com- 
parison with W,,(C~(NH,),~+). 

Calculated from the ratio w,(II)/w4(III) = 

are discussed in section V. Some computations and mathe- 
matical details are postponed for the appendixes. 
11. Electronic Matrix Elements 

Symmetry and spin restrictions are important factors in the 
evaluation of electronic matrix elements and therefore have to be 
analyzed carefully. In the scheme in which the spin is a good quantum 
number, the ground states of Co" and Co"' are 4Tig and 'Alg, re- 
spectively. The electron exchange amounts to a transfer of one electron 
from Co", which is a quartet whose spin quantum number is s = 3/2.  
The resultant state of Co"' must have either s = 1 or s = 2, both states 
being orthogonal to the ground state of Co"', which is a singlet, and 
therefore one obtains V,, = 0 for pure spin states. On the other hand, 
in the ruthenium case the ground-state terms are IAig and 2T2,. 
Therefore, the removal of an electron from Ru" results in a doublet 
which is necessarily 2T2g, thus V,, # 0. The electronic configurations 
of 'Alg and 2T2k are (t2$ and (t2g),5 respectively. They differ only 
in one electron in to, and accordingly the interaction matrix element 
may be written as eq 6, where to(a) is localized on one ion and tzg(b) 
is localized on the second ion. 

v,, = (tzg(a)lultz*(b)) (6) 

Owing to spin-orbit coupling, the true ground states of the cobalt 
ions are not pure spin states. In such a case, the previous argument 
does not hold, and the matrix element VI, has a finite value. 
Nonvanishing matrix elements are obtained between the two low-lying 
excited states of Co"', 3Tlg and 3T2g, and the ground state qlg of Co". 
The true eigenstates can be represented as a linear combination of 
several pure spin states. However, since spin-orbit coupling mixes 
only states which belong to the same double-group representation, 
it can mix the ground state 'Al only with 3Tig (common representation 

Thus, we can write the ground state of Co"' as the linear 
combination in eq 7. 

*(Co"') = iAig[(tzg)61 + c1~Tig[(t2g)~(eg)'I (7) 

In the case of Co" only one low-lying excited state, 2Eg, gives a 
nonvanishing contribution to 6, with the ground state ,Alg of Co"'. 
The spin-orbit coupling splits the ground state 4T1g into three 
components ( J  = 2, 3/2,  
= ,I2{, and ES12 = $,f, where {is the spin-orbit coupling constantJ3 
Double-group representation analysis shows that only the components 
with J = 3/2 and J = 5 /2  mix with the term 2Eg. We therefore write 
the three states as in eq 8. 

with relative energies EllZ = 0, E3 

91 (CO") = 4Tlg(,= 1/2) [(t2g)5(eg)21 

*2(CO19 = 4T1,(5=~,2,[(t2,)5(e,)21 + c22E,[(t2g)6(e,)11 

\k,(CO") = 4Tl,(J=5/2,[(t2e)5(eg)21 + C32Eg[(t2g)6(eg)11 (8) 

Their relative energies are approximately those of the components 
of 4T1g. Taking the value { = 515 cm-' for the spin-orbit coupling 
constant,14 we obtain El = 0, E2 = 257 cm-I, and E3 = 687 cm-'. 
It is quite clear that at room temperature the thermal populations 
of the two excited states cannot be neglected. They should be 
considered in the evaluation of the electron-transfer rate constant. 
As a result, we have to evaluate nine different rate constants, and 
the overall rate constant is their thermal average. The first stage is* 
to evaluate the nine matrix elements between the three possible initial 

3 

k= 1 
Z = c2ke-Ek/kBT 

AE/k = E/ - Ek (1 1) 
one may simply use eq 4 with vif from eq 6 and AE = 0, obtaining 
eq 12. 

WR, = ,I(bg(a)lult2&b) )12G(AE(=o),E,,lAd,l,(w,'J,(w,"j) (1 2) 

111. Average Franck-Condon Factors 
In order to evaluate eq 11 and 12, we have to estimate the nuclear 

factors G(AE,E,,(Ad,),{w,'),(w,"J). These Franck-Condon factors 
express the contributions of the solvent and of the internal vibrational 
degrees of freedom of the ions to the rate constant. In what follows 
we discuss some features of G, while its evaluation by the saddle-point 
method is presented in Appendix B. To obtain a numerical estimate 
of G(AE,E,,(Ad,),[w,'),(w,"j), one needs as an input the information 
about the energetic parameters AE and E,, the structural information 
on (Ad,], and the spectroscopic information concerning the vibrational 
frequencies. The energy gap between the initial and final electronic 
states, AE, can be evaluated from the information about the splitting 
of the ground state of Co", as discussed in the previous section. The 
reorganization energy of the solvent, E,, is given by the Marcus 
expression (eq 13) where, in the symmetric exchange, rl and r2 are 

2n 

the radii of the first coordination layer of AZ+I and Az, n is the solvent 
index of refraction, and D is its dielectric constant. Expression 13 
was evaluated by taking, for the solvent, e2(( l/n2) - (1 / D ) )  = 200 
8, kcal mol-' and by using the following values for the radiii0 (see 
Table I) and the distances between ions: r,(Co"') = 3.5 A, rl(Ru"') 
= 3.7 A, ~ ( C o l ~ =  3.7 A, r2(Ru11) = 3.7 A, RC~II-C,III = 7.3 A, and 
R R ~ I L R ~ I I I  - 7.5 . The resultant solvent reorganization energy is 28 
kcal mol-' for the cobalt case and 27 kcal mol-] for the ruthenium 
case. 

The geometry and force constants of the ligands are almost 
unaffected by the change in oxidation states of the complexes. 
Therefore, we have to deal only with the metal-ligand vibrations. In 
the present case of a symmetrical electron exchange between octahedral 
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complexes, we have 3(6 9 1)  - 6 = 15 modes in each complex. 
Furthermore, we assume that the nature of the normal modes is the 
same in the two oxidation states. The change in the equilibrium 
metal-ligand distance between the two oxidation states is denoted 
by Ar. This bond length change is not reflected in the asymmetric 
modes, for which one has Ar,  = 0. Only for the totally symmetric 
A,, vibration Ar(Alg) f 0 and is actually equal to 6 ' / 2 ( A r ) .  The 
reduced displacement (in reciprocal frequency units) is given by eq 
14, where m is the mass of a single ligand. The available experimental 
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data on bond lengths and vibrational frequencies i n  the cobalt and 
ruthenium complexes are reproduced in Table I. From Table I we 
find that Ar(Co)  = 0.178 A; the corresponding &'(A,,) is evaluated 
according to eq 14, and, together with the information about the 
vibrational frequencies, it is possible to estimate the factor G. 
Numerical values for G (in units of cm) for the relevant values of 
AEkl are given in Table 11, together with the statistical weights at 
300 K, the corresponding values of a$, and the energy gaps LEk.. 

IV. Results 

In the last column in Table I1 we give the values of W' = 
Wk.l (e,(a)lule,(b)) for the CO~+(NI- I~)~-CO~+(NH~)~ system, 
each multiplied by its statistical weight. Their sum is the total 
averaged transition probability divided by the square of the 
one-electron matrix element. The final result a t  300 K is given 
by eq 15, where the electronic matrix element is expressed in 

Wco = 6.0 X 10-'01(e,(a)lule,(b))12 s-l (15) 

units of cm-'. It is interesting to note that, as may be seen 
from Table 11, one would obtain a very similar result on 
neglecting the splitting of the Co" ground state. In  the case 
of ruthenium there is only one transition for AE = 0. 
Computation based on the data given in Table I gives eq 16 

(16) W,,, = 1.8 X 1O2l(tz,(a)Icltz,(b))l2 s-l 

a t  300 K. The ratio between the transition probabilities for 
the two-electron-transfer reactions is given by eq 17. 

The bimolecular rate constant is related to the transition 
probability by the relation in eq 18, where No is Avogadro's 

k = NozJ'W(R) exp[-U(R)/kBT] d3R (18) 

number, U ( R )  is the potential of average force between the 
two complexes as function of their separation R, and W(R) 
is the separation-dependent transition probability. This ex- 
pression may be approximated as eq 19, where R is an effective 

k = N0[4xR2P(W(fT)) exp[-U(R)/kBT]] (19) 

distance for the electron transfer and p = 1 A is a typical 
width. The factor 4rR2P exp[--U(R)/kBT] in eq 19 is expected 
to be practically identical for the cobalt and ruthenium 
electron-exchange reactions. Therefore, the ratio of the rate 
constants for reactions 1 and 2 is given by eq 17. 

V, Discussion 
In order to obtain quantitative information from eq 17 one 

has to estimate the ratio of the transfer matrix elements 
(e,(a)lule&b)) for cobalt and ( t2,(a)lultzg(b)) for ruthenium. 
The explicit evaluation of each of these terms requires a 
detailed knowledge of the electronic wave functions and is not 
practical a t  present. On the other hand, it is possible to 
advance arguments for the estimate of their relative mag- 
nitudes. The orbitals eg and t2, in the hexaammine complexes 
should be described not by the pure metal orbitals but by a 
linear combination of the metal orbitals with an appropriately 
symmetrized combination of the ligand orbitals. The coef- 
ficient of the symmetrized ligand orbital combination is known 
as the covalency parameter.16 For the hexaammine complexes 
of transition-metal ions they are  known to have values in the 
range of 0. 14.5.17 The two-center electron-exchange integrals 
are very sensitive to the behavior of the wave function far from 
the metal nuclei. Therefore, one expects that the major 
contribution comes from the ligand part of the wave function. 
In the present case of the two-electron-exchange reactions, one 
has the same ligands on both metal ions. Thus, we may 
conclude that the difference between the two matrix elements 
originates mainly from the differences in the covalency pa- 
rameters between the hexaammine complexes of Co" and Ru". 
As we have already mentioned, the covalency parameters of 
the two complexes are comparable. The matrix elements are 
proportional to their square, and, therefore, the rate constants 
are proportional to their fourth power. As a result, all we can 
do without more information about the covalency parameters 
is to estimate the square ratio of the exchange matrix elements 
as unity within an uncertainty of 2 orders of magnitude. The 
resultant ratio between the rate constants for reactions 1 and 
2 is k l /k2  N a t  300 K. The ratio k l /k2  consists of two 
factors. First, one contribution of about is due to 
spin-multiplicity effects (aZ in Table 11). Second, the re- 
maining contribution, which originates from the thermal 
average of Franck-Condon factors between excited vibrational 
states, amounts to lo-*. It is interesting to compare this 
average contribution to the Franck-Condon factor between 
the vibrational ground states which amounts to about 
From the huge 10 orders of magnitude difference, one can 
conclude that in the present case transitions between excited 
vibrational states are most important. Stynes and Iberslo have 
estimated the effect of the difference in bond lengths by 
evaluating the classical reorganization energy. They obtained 
a value of 6.8 kcal mol-' which corresponds a t  room tem- 
perature to a factor of This classical calculation is based 
on the assumption that the Franck-Condon factor between 
vibrational states a t  the intersection of the potential energy 
curves is about 1. Actually, it is much smaller, and, as we have 
shown, the detailed quantum mechanical calculation gives the 
factor instead of 

The  important role of the geometric factor relative to 
spin-multiplicity effects was nicely demonstrated by Endicott 
and co-workers.18 They found that the electron-exchange rate 
for the couple C0([l4]-dieneN,)(H~O)~~+,~+ is slow (kcx  = 2 
X M-] s-' a t  25 "C) as compared to Co([14]- 
t e t r a e r ~ e N ~ ) ( H ~ O ) ~ ~ + , ~ +  (kex = 6 X M-' s-' a t  25 "C) and 

Table 11. Evaluation OF Franck-Condon Factors for the Co3+(NH,),-Co2+(NH,), System 

k 1 ( 2 k / ~ ) e - ~ k / ~ B ~  1040rki2 AEkl, Cm-' G, cm X lo- '* W ' ,  cmz s-' X lo-' ' 

1 1 0.59 1.45 0 2.63 2.66 
1 2 0.59 0.85 25 8 1.40 0.83 
1 3 0.59 0.13 687 0.49 0.04 
2 1 0.34 0.85 -258 4.88 1.67 
2 2 0.34 0.50 0 2.63 0.53 
2 3 0.34 0.008 429 0.92 0.03 
3 1 0.07 0.13 -687 13.44 0.14 
3 2 0.07 0.08 -429 7.33 0.05 
3 3 0.07 0.01 0 2.63 0.002 
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vitamin B12 (kex = 2.103 M-l s-l a t 35 "C). In these three 
couples both the Co" and Co"' ions have a low-spin electronic 
configuration. Therefore, the large differences in the elec- 
tron-exchange rates may be attributed only to differences in 
the Franck-Condon factors. Indeed, X-ray analysis of 
([ 141-dieneN4) cobalt complexes19 reveals a large difference 
of the axial bond lengths between the Co" and Co"' complexes. 
A quantitative evaluation of the average Franck-Condon 
factors is made difficult by the fact that the crystallographic 
studies were done on the Co"' complex with ammonia mol- 
ecules as axial ligands, whereas in the Co" complex the ligands 
were water molecules. 

An alternative mechanism for reaction 1 was suggested by 
Orgel" and by Stynes and Ibers,lo who propose a reaction path 
which proceeds via the thermally excited low-spin 2E, state 
of the Co" ion. Under the reasonable assumption that the 
electronic-exchange matrix element for the cobalt system, when 
the Co" is in the 2E, state, is of the same order of magnitude 
for the ruthenium system, one gets eq 20 for this alternative 

mechanism. The excited-state (2Es) energy, relative to the 
ground state, has a value of about 9000 cm-1,20 which gives 
a ratio of for kl /k2 at  300 K, while our mechanism yields 
kl /k2 = providing a more efficient pathway for reaction 
1. Another reaction path involves the excited electronic states 
of the Co"' ion either in the high-spin (t2,)4(e,)2 lo configuration 
or in its (t2$(e,)' configurations. However, the excitation 
energies involved are 21 600 cm-' lo and 13 400 cm-1,21 re- 
spectively, yielding, therefore, an even smaller k l /k2  ratio. 
Thus the rates of the reactions, which proceed via a thermally 
excited electronic state, are expected to be negligible as 
compared to the mechanism discussed in the present paper. 
Appendix A. Electronic Matrix Elements 

The relevant wave functions of the Co" and Co"' ions, as 
given in eq 7 and 8 are  in the form of a linear combination 
of pure spin wave functions \kl and \k2: 

9 = 9l+ c 9 2  

The mixing coefficient c is small, and, therefore, it can be 
evaluated by first-order perturbation theory as in eq A-2, where 

(A-2) 
H,, is the spin-orbit interaction operator, and E2 and El are 
the pure spin-state energies. For the evaluation of the 
coefficients cl, c2, and c3 (eq 7 and 8) one needs specific 
information about energies and matrix elements. The relevant 
matrix elements of the spin-orbit interaction operator are given 
in eq A-3.13 The spin-orbit coupling constants have the 

(3TlglHs,11AI,) = 61/2f(C0111) 

(A- 1 ) 

c = (*21ffSol*i ) /(E2 - El )  

(2E,lffso14T1g(5/2~) = - (3/51/2)wo11) ('4-3) 

valuesI4 {(Co") = 515 cm-' and ~(CO"') = 600 cm-'. The 
energy denominator for the Co"' is given by21 E(3Tlg) - 
E('A1,) = 13400 cm-' while for the Co" ion, disregarding the 
splitting of the ground state, it iszo E(2Eg) - E(4T1g) = 9000 
cm-l. The resulting coefficients, computed on the basis of the 
above information, are  c1 = 0.110, cz = -0.026, and c3 = 

Appendix B. Evaluation of Franck-Condon Factors 
The theory of electron-transfer reactions in solution usually 

concentrates on the solvent degrees of freedom and treats the 
reactants as rigid  system^.^!^ This is a good approximation 
for a wide class of systems, but in some interesting situations, 

-0.077. 

such as the hexaamminecobalt exchange, one cannot ignore 
the effects of internal vibrations. The frequencies of the 
internal vibrations are quite high (at room temperature hw 
L kBT), and, therefore, one ought to treat their effects 
quantum mechanically. I t  is possible to incorporate them 
either within a classical description of the solventz2 or within 
the quantum mechanical (polaron-like) d e s c r i p t i ~ n . ' ~ ~ ~ ~ - ~ ~  For 
the present problem, we adopt the mathematical framework 
of the generating function and its evaluation through the 
saddle-point method. 

This procedure was developed by Holstein26 for the similar 
problem of small polarons, under the assumption that only 
equilibrium distances are changed and the frequencies remain 
constant. In the present case, the two oxidation states have 
different vibrational frequencies, and, therefore, one has to 
use more general expressions for the generating  function^.^^^^* 
The formal expression for the averaged Franck-Condon factor 
may be written as eq B-1, where AE is the energy gap. The 

l]efc(') d t  (B-1) 

subscripts s and c specify the solvent degrees of freedom and 
the internal vibrations, respectively. Putting fc(t) = 0, one gets 
the already well-known contribution of the solvent given by 
eq B-2. The solvent is characterized by its reorganization 
energy E, (eq 13). 

c 

The factor exp(fc(t)) is the generating function of the in- 

(B-3a) 
ternal vibrations, and it is given by 

f c W  = W )  + P C W  

w,Iw/(Ad,)2 
(B-3b) 

@"(') = -? W/ coth A; + w,I coth p," 

hW,I 
~(w:w,")I /~ sinh - 

[(sinh 2A,')(sinh 2p/)]1/2 

2keT  
[(w/ coth p/  + pc(t)  = C l n  

where 

p/ = 1/Ziw/t 

The sum is taken over all internal modes, and the oxidation 
states are distinguished by one and two primes. The changes 
in the equilibrium configurations are  characterized by the 
reduced displacements Ad, (eq 14). The second term in eq 
B-3 originates only from vibrational frequency differences, and 
in the present case its contribution is much smaller than that 
of the first term. 

The integral in eq B-1 is evaluated by the saddle-point 
method. The saddle points are the solutions of the equation 
F1(to) = 0 where F' 

It can be shown that in the present case it is enough to consider 
only the saddle point to which is closest to the axes origin (also 
Re(to) = 0). The integral (B-1) is then given by (B-5). In 

G = l / h [ - 2 i ~ ( F " ( t ~ ) ) ] - ~ / ~  exp F(to) (B-5) 
general one has to solve the saddle-point equation (B-4) 

dF/d t  and 
F(t) = i t (AE) /h  + fs(t) - S, + f,(t) (B-4) 
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numerically; only if the energy gap vanishes (AI2 = 0) can one 
find by inspection that to = ih /2kBT.  In this case one may 
write down the final result as  

Buhks et al. 

X x  = 4w,’w,”/(w,’ coth v,’ + w,” coth vi’) X 
(a,‘ tanh v,‘ + w,” tanh v,”) (B-7) 

2(Adx)2w,Iw,” 
w,’ coth v,“ + w,” coth v,‘ Y, = (B-8) 

Finally, 9,“(ih/2kBT) in eq B-6 is the second logarithmic 
derivative of the generating function for the symmetric ex- 
change process, which accounts for changes in metal-ligand 
bond distances in a system where the AI, vibrational modes 
are characterized by different frequencies 0,’ and w,)I (eq B-9) 

w,I cosh v‘ cosech3 v’ + w,“ cosh Y’‘ cosech3 v” 

(w,’ coth v,” + w/ coth v , ’ ) ~  

(B-9) 

and contains contributions only from these vibrational modes 
where Ad, # 0. The third term, p:’(ih/2kBT), in eq B-6 is 
responsible for frequency changes only (eq B-10). 

1 (cosech2 v,’ - cosech2 v,”)~ 
(w,‘ coth v,” + w,’’ coth v , / ) ~  

W,’W,” 

1 ( w i 2  sech2 Y,’ - w,”~ sech2 
4 (w,’ tanh Y,‘ + w,‘I tanh v,”)~ 

+ - 

1 w i 3  sinh v,’ sech3 v,’ + 
2 

sinh v,“ sech3 Y,” + - 
w,‘ tanh v,’ + a,’’ tanh v,” 

1 (wL2 cosech2 v,’ - w,”~ cosech2 

4 w,‘ coth v,’ + w,II coth 
- - 

1 1 w i 3  cosh v,’ cosech3 v,’ + w / 3  cosh v,” cosech3 v,” 

2 
- 

w,) coth v,’ + w,” coth v,” 
(B-10) 

It is apparent that co,“(ih/2kBT) = 0 when the frequencies 
in each mode are  equal; Le., w,’ = w,” for all x .  Numerical 
evaluation for the hexaamminecobalt electron-exchange system 
givesf,” = -4.1 x IO6 cm-2, @;I(ih/2kBT) = -5.2 x IO6 cm-2, 
and p:’(ih/2kBT) = -0.4 X lo6 cm-2; that is Ip;’(ih/2kBT)I 
<< I@;’(ih/2kBT)I. The factor nJX, which originates only 
from vibrational frequency changes, amounts to 0.18 which 
is a relatively small contribution (if w,’ = w,”, X ,  = 1). The 
most important contribution is C,Y, = 18. 

In order to obtain G for other values of the energy gap, one 
has to solve numerically the saddle-point equation (eq B-4) 
and then evaluate the different terms in eq B-5. For each value 
of AEkl the saddle-point equation, eq B-4, was solved nu- 
merically, and the resulting value of t,, was incorporated in 
eq B-5. The final numerical values of G are  summarized in 
Table 11. All calculations were performed a t  300 K. 

Registry No. CO~’(NH~)~,  14695-95-5; Co2+(NHJ6, 15365-75-0. 
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